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Abstract—Mental health awareness is a growing movement,
but prevention and diagnoses of mental health disease is difficult.
Unlike many other parts of the body, the human brain is
not understood to the extent that direct relationships between
external stimuli and temporary moods, long-term depression,
anxiety, etc. are fully understood. Deep learning algorithms
provide a way to extract high-level information from images, and
thus present a promising method to aid in diagnosis of mental
health disorders. In this project, we applied and evaluated several
neural network architectures to the binary classification problem
of depression diagnosis in the fMRI dataset openneuro-ds000171
and present several promising results.

I. INTRODUCTION

Mental health awareness has increased in recently history as
suicide rates continue to grow across demographics [1]. Today,
suicide is the second leading cause of death in individuals
between age 10 and 34 [2]. Suicide often affects not only
the individual, but also the individual’s immediate family
and friends, community and society as a whole. Current
research in depression and mental health aims to mitigate
the risk of suicide by diagnosing mental disorders before
they exacerbate and to treat individuals with mental disorders
using techniques such as hormonal therapy and meditation
[3]. As public attitude shifts towards viewing depression as a
mental condition, finding physiological effects of the disease
becomes useful. In particular, understanding the depressed
brain allows doctors to improve treatment by searching for
regions-of-interest with high brain activity and monitoring the
effectiveness of administered drugs. In law, the potential phys-
iological definitions of behavioral diseases eliminates “grey
areas” that otherwise allow insurance companies to abuse
these ambiguities by denying coverage for mental illnesses.
In science, mental health issues provide a novel perspective
into the workings of the human brain in ways that may not
have been known before – are depression and normal feelings
of sadness physiologically distinguishable? This project aims
to investigate the use of computer vision techniques to study
fMRI scans in 39 patients divided into two classes: 19 with a
history of chronic depression and 20 with no known history
of chronic depression. Each patient, for 5 trials, is subject
to positive and negative musical and nonmusical stimuli and
is thoroughly scanned. Using this data, we take a machine
learning approach to diagnose depression in a given fMRI
scan. For background, Functional Magnetic Resonance Imag-
ing (fMRI) is a technique in which hemodynamic response to

the brain is used to map brain activity. More specifically, blood
releases oxygen causing neurons to fire at a higher rate. On
one hand, oxygenated blood contains oxyhemoglobin which
is a diamagnetic. On the other hand, deoxygenated blood
contains deoxyhemoglobin which is paramagnetic. The relative
difference in these concentrations can be traced by magnetic
properties in a process called Blood-Oxygen-Level-Dependent
(BOLD) contrast, lending insight into brain activity[4].

II. APPROACH

A. Prior Research

Prior research in this area has used Support Vector Machines
to process fMRI imaging data [5]. This is based on the belief
that to fMRI data is inter-subject and consists of many vari-
ables, so a multivariable and brain response model-free method
is required to make diagnoses [9]. We relax this assumption
and propose a new method using convolutional neural net-
works as the first step to processing fMRI imaging data. While
these are similar in difficulty in terms of implementation, there
are additional challenges with CNNs including a need for
abundant training data, large computational resources, and , as
well as the lack of prior research and relatively small dataset.
There is also the added difficulty of eventually preprocessing
managing large amounts of patient data, which we resolve
by building a fMRI processing pipeline and creating a 3-
dimensional neural network that is both hyper optimized and
light-weight in order to provide timely output.

B. Dataset

ds000171 is dissimilar from [5], which uses diffusive tensor
imaging as opposed to fMRI. Rather than manually scanning
pertinent volumes and performing analysis of chosen regions
of interest, we propose using a CNN-based algorithm to
automatically find and extract useful features. As mentioned
previously, 39 patients (19 depressed and 20 non-depressed)
are subject to musical and nonmusical stimuli over 5 trials
while their brains are scanned. It is important to note that the
depressed patients are experiencing a depressive episode at the
time of scanning.

C. Objectives

Like previous studies, our general objective is to use
computer vision techniques to determine patterns of brain
activity that indicate depression. Our approach differs from



predecessors by the algorithms applied. Our first goal is to
determine if there is a CNN architecture that can show some
improvement over a baseline metric as well as other models
used in previous literature, such as the SVM. Furthermore, we
hope to compare newer model architectures to assess whether
these neural networks have added inference ability.

III. PREPROCESSING

Traditionally, fMRI scans have four associated dimensions
(a 3-dimensional brain volume over a period of timesteps
lasting the duration of the scan). This time series data is
preformatted in a Brain Imaging Data Structure (BIDS) format.
We use the BIDS format to maintain compatibility with other
models for late stage testing. We primarily use the fmri
prep package on brainlife.io to preprocess our data. Brain-
life.io makes available data and analyses software that allows
us to run various algorithms on our datasets through built
pipelines. We use fmriprep on our raw data to output standard
preprocessed BOLD data. This includes motion correction,
skull stripping, brain region segmentation and reorientation.
We also obtain a derivatives csv file which indicates the
estimated amount of motion at each frame, to be used in
analyses as a nuisance covariate for later data processing.
Next, we take each preprocessed brain volume and examine
three different angles at various time intervals. For each time
interval, we save the middle slice at three different angles that
will eventually be fed into our convolutional neural network.
This greatly decreases the possible regions of interest and
narrows the learning problem to the available image regions
instead, which represent the largest possible view of the brain
in 2-dimensions. We justify this by making the assumption that
blood oxygenation rate does not change between the depressed
and control subjects, and that the oxygenated regions are
located closer to these volume axes because the outer regions
of the brain are likelier to be grey matter or peripheral organs.
To allow some flexibility in the data, we add Gaussian noise
with variance of 5 pixels to the precise location of the input
data, so some regions of interest that are near the volume axes
are represented in the data.

Figure 1 shows examples of three mid-axial scans at t=0,
t=52, and t=104 (row 1, 2, and 3 respectively). We can see
that the oxygenation does not vary to the extent that pooling
operations in a CNN would likely act as a high-pass filter to
obfuscate the details varying between the timesteps.

IV. RESULTS

A. 3-D CNN

3-D CNNs presented a logical way to retain correlations
of brain activity by voxel without sacrificing some degree
of spatial information. After preprocessing, we first tried
to implement a 3-dimensional convolutional neural network
to see if we achieved low training error, but found when
training the model that it required too much time and memory,
even with a relatively small number of 3-dimensional filters
(less than 64 in any layer). Due to the added dimension the
number of filters grows very quickly given the relatively large

Fig. 1. Figure 1: Mid-axial volume scans

volume size (padded to 70 x 70 x 70). Even when taking a
single average of the entire time-series volume, computational
resources were not present to perform meaningful training, so
this first foray was abandoned.

B. Initial 2-D CNN

As a next attempt at the binary classification task of
depression diagnosis, we use a model architecture similar to
AlexNet with 7 convolutional layers and 3 fully connected
layers trained on the mid-sagittal, mid-traversal, and mid-
coronal scans (essentially stacked into an image with 3 chan-
nels) with added Gaussian noise off the axes to increase the
training data variance. We were able to achieve a decrease in
empirical training loss, indicating visible optimization results.
However, the model accuracy was exactly the baseline (51%)
so significant results were not achieved, though a subset of the
training data was ready for use and more complex models were
not considered. Interestingly, at first, in lowering the batch size
and learning rate, we were able to see much greater training
and validation accuracy results (90%+ and 80%+ respectively)
but further analysis revealed that the network had learned to
match the brain shapes between runs in the training set and
validation set. To ensure this did not happen, we converted
the training and validation set to be patient-based; i.e. 30%
of patients were chosen to be in the validation set instead of
30% of all scans present. This enabled models to learn high-
dimensional fMRI patterns as opposed to simply overfitting
to patients’ brain structure. One main merit in our neural net
was how fast we were able to train. On a parallelized-TPU
framework, though several trials, training took on average 150
epochs and 1000 seconds. This is much quicker than our 3-
dimensional CNN, so we intend to explore this idea further
to achieve lower training error. However, we found this naive
architecture was not sufficient for improving over guessing at
random after the repartitioning of the training and validation
data. We hypothesized the first attempt’s failure on the lack of
a sufficiently rich feature space. We also believed that filtering
and pooling with the chosen kernel sizes was risky, as the
scan itself is noisy to begin with and we were not certain of
what the model should be looking for a priori. As a result,



we applied several candidate architectures that have shown
remarkable success in image classification tasks to address
our original architecture’s purported deficiencies.

C. Deeper Networks

The first of these candidate architectures, VGG-19 [10],
simply added more layers and batch normalization. The added
number of parameters we hoped would be better able to
adequately learn the rich feature space, and batch normal-
ization, as commonly used in deep learning, was expected
to reduce artifacts of increased variance from the network
weights being multiplied. This architecture showed modest
improvement over the original CNN. This achieved training
accuracy around 65% and validation accuracy 58%.

Inception Modules The next of these architectures incorpo-
rated inception modules[11]. Here, we wanted to see whether
the ambiguity in filter sizing and pooling could be addressed.
This proved to be the most effective of the methods attempted,
reaching training accuracy of over 85% and validation accu-
racy near 70% using GoogLeNet. Interestingly, the Inception-
v3 architecture [12]was actually worse at the classification
task, achieving only the baseline (51%) training accuracy. This
however may be an artifact of poor hyperparameter tuning.

D. Residual Connections

The last of these architectures utilized residual connections.
Using a very deep network, Resnet-101, we wanted to assess
whether residual learning could improve on the non-residual
and relatively shallow networks used previously. After over
100 epochs of training, training accuracy did not reach over
57% and validation accuracy hovered near the baseline.

V. CONCLUSIONS AND NEXT STEPS

The next steps in this project are to increase model com-
plexity and augment the training data in order to achieve lower
training error. Once we achieve lower training error we can
statistically compare our approach against the traditional SVM
approach and then use more complex models. We find that
the GoogLeNet architecture shows promise and significantly
improves from the baseline accuracy. With more time and
resources to perform extensive hyperparameter tuning, we
believe that, on this dataset, the algorithm could demonstrate
some knowledge of physiological responses to depression. We
claim this by assuring validation subjects are separated from
training subjects and our analysis involved all stimuli. How-
ever, before concluding the model learned depression diagno-
sis from fMRI, it is important to note that physicians’ opinions
should be taken into consideration as there may be tangentially
related phenomena that may affect our results we are unaware
of. One corollary to this project is to incorporate the region-
of-interest correlation matrix from BOLD preprocessing into
the learning algorithm to see if our learning algorithm can
be guided by fMRI correlation matrices. Another interesting
project would be to incorporate other biological metrics into
our analysis. In modern day diagnoses, metrics such as pulse
rate to varying stimuli, the rate of secretion of hormones and

various psychological stimuli are readily available for patients
seeking depression diagnoses, so we hope to incorporate
these data sources into our analysis. Overall we are satisfied
with the results of this project in finding some physiological
depression diagnostics using fMRI. Furthermore, we were able
to do this using a novel, efficient preprocessing method aimed
at maximizing exposure to possible regions-of-interest while
effectively reducing the dimensionality of the fMRI scan by
2.

Please contact the author for access to data or code.
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