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Abstract—Soft robots utilize deformable materials for actu-
ation. As a result, rigid body modeling fails to characterize
soft robot motion, especially with greater degrees of freedom.
Inspired by the biological faculty of proprioception, we propose
treating this problem as a machine learning problem for sensing
the robot’s own movement. Specifically, we test this approach
on a robotic arm that is composed of a mesh of optical
lightguides. After trialing several different supervised regression
algorithms, we find that using artifical neural networks (ANNs)
empirically yields the lowest metric regression error and is able to
successfully predit the arm’s motion. Further work is planned to
assess the learned model’s performance on robots with additional
degrees of freedom.

Index Terms—soft robotics, machine learning, deformation
sensing

I. INTRODUCTION

Proprioception is the ability of many living organisms to
sense body position and movement, enabling coordination
independent of visual feedback [1]. For example, humans are
able to reason about the location of their extremities without
looking at them. Robots traditionally make use of rigid-body
dynamics equations to approximate a similar sense, but relying
on these methods restricts the complexity of robot motion. Soft
robots are robots built with nonrigid materials that can add
degrees of freedom to the robots motion, such as increased
flexibility, expansion and contraction, and so on.

II. PRIOR RESEARCH

While some work has been done in the application of
machine learning to soft robotics, most control algorithms
for soft robots rely on mechanical models that rely on
constraining assumptions about the robot [2]. Meanwhile,
autonomous sensing has made considerable progress as a
result of advances in machine learning, leading to levels
of autonomy previously not possible [3]. The emergence of
machine learning therefore has great promise because data-
driven approaches can be applied to high-dimensional, noisy
sensing problems [2], making the extension of these methods
to soft robotics intuitive and promising. However, one of the
greatest challenges in using machine learning approaches is
the need for vast amounts of unbiased data, which is difficult
to achieve in experiments especially with high-variance signals
with large dimensionalities. Carefully designed data collection
and validated learning algorithms are therefore critical to

determining the effectiveness of any machine-learning based
sensing scheme.

In this project we used machine learning for proprioception
sensory in soft robots. Tactile sensing and proprioception are
important because they characterize an autonomous agent’s
interactions with surrounding objects, facilitating increasingly
complex tasks [2]. While computer vision offers some seman-
tic knowledge of the world, tactile sensing allows soft robots
that can change shape and size added inference capability
that more closely resembles a living organism’s [1]. Studies
such as [4] led us to believe that proprioception sensory with
machine learning is a feasible undertaking [5]. For example,
inorganic sensors are used to classify muscle fatigue in [6] and
ridge regression modeling predicts robotic arm deformation
angle in [7] . Furthermore, previous work in our group [8]
found that machine learning could be used to analyze light
intensity signals in sensory foams, and that waveguide position
modeling without machine learning was not robust to the
complexity of motion [9]. We thus believed that modeling
similar signals in optical lightguide deformations would be
possible,

III. DATA COLLECTION AND PREPROCESSING

Data collection for machine learning algorithms is ideally
unbiased and abundant. However, sampling from all com-
binations of continuous degrees of freedom of an arm is
impossible, so discrete joint angles of and block positions were
sampled instead. The angles were linearly spaced in the range
-1.06 radians to 1.06 radians with intervals of 0.11 radians
and the block positions were linearly spaced in the range 0 to
95 mm with intervals of 8.5 mm. These intervals were chosen
to approximately mimic the range of motion of a real arm.
To ensure consistency of measurement and minimize human
error, a testing apparatus was built to move the arm to the
desired position and rotation (Figure 1) . 10 trials were taken
with each angle to reduce variance in the training set. The
feature space of the data was the intensity measurement from
11 sensors and the goal of a candidate multiple regression
algorithm was to map these 11 sensors to the corresponding
joint angle and block position.

The machine learning problem was a multi-output regres-
sion, with two predicted variables (joint angle and block
position) given 11 light intensity sensor readings for a given
data sample. The output variables cannot be assumed to be



independent because the light intensity for a given joint angle
may vary with block position and vice versa. One approach
is to chain models [7] such that a base regressor is trained
to predict one label element and then predict the next label
element using the previous label estimate as a feature. This
introduces a bias for the ordering of training but allows for
univariate regressors to be applied in series to multi-output
problems. To maximize performance, principal component
analysis (PCA) was applied to the input data prior to assess
whether any models benefitted from dimensionality reduction
primarily as a low-pass filter in the feature space but also as
a dimensionality reduction, which is a common practice in
machine learning. The transformation did not yield significant
improvements and thus the original 11-dimensional feature
space was retained and scaled by median and interquartile
range to eliminate outlier effects [10].

IV. MACHINE LEARNING ALGORITHMS 1

A. Decision Tree Regressors
The decision tree is a model that divides the training

samples based on feature values to minimize a metric of
homogeneity. Common metrics include information gain and
the Gini impurity. In the regression problem, inference is
performed by taking the average of a given leaf. Because
decision trees can account for combinations of labels, they
avoid the independence assumptions made by regressor chains.
In this experiment, decision trees and their variants were thus
promising.

A single decision tree is likely to overfit to the entire
training set. A random forest regressor corrects this issue by
forming a set of decision trees is formed with each individual
tree responsible for learning a partition of the training set.
Overfitting is therefore reduced by subsampling from the
original training data and using majority voting of several
decision trees instead of relying on one decision tree.

Gradient-boosting algorithm assign a differentiable loss
function to iteratively optimize a set of weak learners’ hy-
potheses.

B. Regressor Chains
Two independent single-output models must be trained, one

per predicted variable, if single-output regression algorithm
are to be considered. Evaluating this approach showed that
this independence effect was non-negligible. Regressor chains
allow correlated multioutput prediction by using the prediction
of the first independent model as a feature that is fed to the
second model, such that the feature space of the first model is
the 11 sensor readings and the feature space of the latter model
is 11 sensor readings plus the first model’s output. Regression
chaining provided a framework for structurally independent
single-output regressors to perform correlated predictions. The
method was attempted with polynomials (degrees 1 to 5) and
Elastic Net models based on [12], as well as with individual
random forest models to compare mean-squared error with
respect to the multiple output model.

1algorithm descriptions are supported by [11] unless otherwise mentioned

C. Artificial Neural Networks

Another approach to the multioutput regression problem
is using a neural network (also known as a multilayer per-
ceptron). These methods approximate a gradient with respect
to a mean-squared error loss function between a 2-vector
y, y* representing (actual angle, actual block position) and
(predicted angle, predicted block position) respectively. Neural
networks have the advantage of being capable of modeling
complex, nonlinear, and high-dimensional functions [13]. Note
that normalization of the block position and joint angle was
necessary prior to training to avoid biasing optimization to-
wards minimizing block position error only.

D. Evaluation

Each model was assessed according to the root-mean
squared error metric:

RMSE(y, y∗) = 1

n

n∑
i=1

(yi − y∗i )
2

where the data set consists of n samples and yi and y∗i are
labels and model predictions respectively.

TABLE I
SELECTED MODEL JOINT ANGLE RMSE (RAD)

Model Training Test
Decision Tree 0.12 0.46

Random Forest 0.11 0.34
Gradient Boost 0.28 0.32

Cubic + ElasticNet Chain 0.10 0.41
Neural Net 0.17 0.31

TABLE II
SELECTED MODEL BLOCK POSITION RMSE (MM)

Model Training Test
Decision Tree 8.8 24.3

Random Forest 8.9 21.6
Gradient Boost 15.8 21.9

Cubic + ElasticNet Chain 9.8 25.1
Neural Net 11.8 20.7

Fig. 1. The arm apparatus



CONCLUSIONS

The experiments conducted showed that the degrees of
freedom could be accurately estimated by a machine learning
model. We showed that real-time inference can detect changes
with no discernible latency. In comparison of multioutput
regressors, the artificial neural networks generalized best to
unseen data by demonstrating the lowest test accuracy.

FUTURE WORK

We hypothesize that as further degrees of freedom are
explored, the properties of the ANN as a universal function ap-
proximator [14] will allow it to continue outperforming other
models in terms of metric error. Our next steps are therefore to
explore such problems. Bayesian parameteric estimation may
be another approach to the problem that may be less data
intensive. Finally, studying balance of locomotive robot using
these findings would be a useful extension and allow another
comparison between human and robot proprioceptive sensing.
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